Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.

نویسندگان

  • Alexandre Tkatchenko
  • Alberto Ambrosetti
  • Robert A DiStasio
چکیده

Interatomic pairwise methods are currently among the most popular and accurate ways to include dispersion energy in density functional theory calculations. However, when applied to more than two atoms, these methods are still frequently perceived to be based on ad hoc assumptions, rather than a rigorous derivation from quantum mechanics. Starting from the adiabatic connection fluctuation-dissipation (ACFD) theorem, an exact expression for the electronic exchange-correlation energy, we demonstrate that the pairwise interatomic dispersion energy for an arbitrary collection of isotropic polarizable dipoles emerges from the second-order expansion of the ACFD formula upon invoking the random-phase approximation (RPA) or the full-potential approximation. Moreover, for a system of quantum harmonic oscillators coupled through a dipole-dipole potential, we prove the equivalence between the full interaction energy obtained from the Hamiltonian diagonalization and the ACFD-RPA correlation energy. This property makes the Hamiltonian diagonalization an efficient method for the calculation of the many-body dispersion energy. In addition, we show that the switching function used to damp the dispersion interaction at short distances arises from a short-range screened Coulomb potential, whose role is to account for the spatial spread of the individual atomic dipole moments. By using the ACFD formula, we gain a deeper understanding of the approximations made in the interatomic pairwise approaches, providing a powerful formalism for further development of accurate and efficient methods for the calculation of the dispersion energy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohesive properties and asymptotics of the dispersion interaction in graphite by the random phase approximation.

The structural properties of graphite, such as the interlayer equilibrium distance, the elastic constant, and the net layer binding energy, are obtained using the adiabatic-connection fluctuation-dissipation theorem in the random phase approximation. Excellent agreement is found with the available experimental data; however, our computed binding energy of 48 meV per atom is somewhat smaller tha...

متن کامل

Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach.

We explore several random phase approximation (RPA) correlation energy variants within the adiabatic-connection fluctuation-dissipation theorem approach. These variants differ in the way the exchange interactions are treated. One of these variants, named dRPA-II, is original to this work and closely resembles the second-order screened exchange (SOSEX) method. We discuss and clarify the connecti...

متن کامل

Band gaps, ionization potentials, and electron affinities of periodic electron systems via the adiabatic-connection fluctuation-dissipation theorem

An approach to calculate fundamental band gaps, ionization energies, and electron affinities of periodic electron systems is explored. Starting from total energies obtained with the help of the adiabatic-connection fluctuation-dissipation (ACFD) theorem, these physical observables are calculated according to their basic definition by differences of the total energies of the N -, (N − 1)-, and (...

متن کامل

Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation.

An adiabatic-connection fluctuation-dissipation theorem approach based on a range separation of electron-electron interactions is proposed. It involves a rigorous combination of short-range density-functional and long-range random phase approximations. This method corrects several shortcomings of the standard random phase approximation and it is particularly well suited for describing weakly bo...

متن کامل

Fluctuation-dissipation theorem and quantum tunneling with dissipation

We suggest to take the fluctuation-dissipation theorem of Callen and Welton as a basis to study quantum dissipative phenomena ( such as macroscopic quantum tunneling ) in a manner analogous to the Nambu-Goldstone theorem for spontaneous symmetry breakdown. It is shown that the essential physical contents of the Caldeira-Leggett model such as the suppression of quantum coherence by Ohmic dissipa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 138 7  شماره 

صفحات  -

تاریخ انتشار 2013